Role of TAS2R and transcription factor SREBP-2 in pathogenesis of respiratory diseases
https://doi.org/10.24884/1609-2201-2024-103-4-26-30
Abstract
More and more new data, concerning extraoral bitter taste receptors (TAS2R), appear now. Current data on SREBP-2, its role in cholesterol synthesis, participation of TAS2R in the local protective mechanisms in a ciliated epithelium of the respiratory tract and its activation by “quorum sensing” system molecules and its connection with the components of mucociliary clearance are presented.
The role of extraoral TAS2Rs and mechanisms of its regulation remain uncertain, that requires further research, including the field of respiratory pathology.
About the Authors
M. A. NyomaRussian Federation
Mikhail A. Nyoma - Cand. of Sci. (Med.), Associate Professor, M. Chernorutsky Hospital Therapy Department.
6‒8, L’va Tolstogo str., Saint Petersburg, 197022, +7-904-333-85-67
R. G. Murkina
Russian Federation
Rakhil G. Murkina - 1st year Resident.
Saint Petersburg
V. V. Sadovaya
Russian Federation
Victoria V. Sadovaya - 6th year student.
Saint Petersburg
V. N. Mineev
Russian Federation
Valery N. Mineev - Dr. of Sci. (Med.), Professor, M. Chernorutsky Hospital Therapy Department.
Saint Petersburg
References
1. Finger T. E., Böttger B., Hansen A. et al. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA. 2003;100(15):8981–6. https://doi.org10.1073/pnas.1531172100.
2. Tizzano M., Gulbransen B. D., Vandenbeuch A. et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA. 2010;107(7):3210–5. https://doi.org10.1073/pnas.0911934107.
3. Shah A. S., Ben-Shahar Y., Moninger T. O. et al. Motile cilia of human airway epithelia are chemosensory. Science. 2009;325(5944):1131–4. https://doi.org10.1126/science.1173869.
4. Maurer S., Wabnitz G. H., Kahle N. A. et al. Tasting Pseudomonas aeruginosa Biofilms: Human Neutrophils Express the Bitter Receptor T2R38 as Sensor for the Quorum Sensing Molecule N-(3-Oxododecanoyl)-l-Homoserine Lactone. Front Immunol. 2015;6:369. https://doi.org10.3389/fimmu.2015.00369.
5. Kawasumi T., Takeno S., Ishikawa C. et al. The Functional Diversity of Nitric Oxide Synthase Isoforms in Human Nose and Paranasal Sinuses: Contrasting Pathophysiological Aspects in Nasal Allergy and Chronic Rhinosinusitis. Int J Mol Sci. 2021;22(14):7561. https://doi.org10.3390/ijms22147561.
6. Kim J. W., Min Y. G., Rhee C. S. et al. Regulation of mucociliary motility by nitric oxide and expression of nitric oxide synthase in the human sinus epithelial cells. Laryngoscope. 2001;111(2):246–50. https://doi.org10.1097/00005537-200102000-00011.
7. Workman A. D., Carey R. M., Kohanski M. A. et al. Relative susceptibility of airway organisms to antimicrobial effects of nitric oxide. Int Forum Allergy Rhinol. 2017;7(8):770–776. https://doi.org10.1002/alr.21966.
8. Nyoma M. A., Murkina R. G., Mineev V. N. Role of TAS2R38 polymorphism in respiratory diseases pathogenesis. Medical Immunology (Russia). 2024;26(4):707–710. (In Russ.).
9. Takemoto K., Lomude L. S., Takeno S. et al. Functional Alteration and Differential Expression of the Bitter Taste Receptor T2R38 in Human Paranasal Sinus in Patients with Chronic Rhinosinusitis. Int J Mol Sci. 2023;24(5):4499. https://doi.org10.3390/ijms24054499.
10. Malki A., Fiedler J., Fricke K. et al. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol. 2015;97(3):533–45. https://doi.org10.1189/jlb.2A0714-331RR.
11. Tran H. T. T., Herz C., Ruf P. et al. Human T2R38 Bitter Taste Receptor Expression in Resting and Activated Lymphocytes. Front Immunol. 2018; 9:2949. https://doi.org10.3389/fimmu.2018.02949.
12. Tran H. T. T., Herz C., Ruf P. et al. Human T2R38 Bitter Taste Receptor Expression in Resting and Activated Lymphocytes. Front Immunol. 2018;9:2949. https://doi.org10.3389/fimmu.2018.02949.
13. Orsmark-Pietras C., James A., Konradsen J. R. et al. Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. Eur Respir J. 2013;42(1):65–78. https://doi.org10.1183/09031936.00077712.
14. Jeruzal-Świątecka J., Borkowska E., Łaszczych M. et al. TAS2R38 Bitter Taste Receptor Expression in Chronic Rhinosinusitis with Nasal Polyps: New Data on Polypoid Tissue. Int J Mol Sci. 2022;23(13):7345. https://doi.org10.3390/ijms23137345.
15. Jeon T. I., Zhu B., Larson J. L, Osborne T. F. SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J Clin Invest. 2008;118(11):3693– 700. https://doi.org10.1172/JCI36461.
16. Miserez A. R., Muller P. Y., Barella L. et al. Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis. 2002;164(1):15–26. https://doi.org/10.1016/s0021-9150(01)00762-6.
17. Weber L. W., Boll M., Stampfl A. Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World J Gastroenterol. 2004;10(21):3081–7. https://doi.org/10.3748/wjg.v10.i21.3081.
18. Horton J. D., Goldstein J. L., Brown M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–31. https://doi.org10.1172/JCI15593.
19. Descamps-Solà M., Vilalta A., Jalsevac F. et al. Bitter taste receptors along the gastrointestinal tract: comparison between humans and rodents. Front Nutr. 2023;10:1215889. https://doi.org10.3389/fnut.2023.1215889.
20. Wu S. V., Rozengurt N., Yang M. et al. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA. 2002;99(4):2392–7. https://doi.org10.1073/pnas.042617699.
21. Castoreno A. B., Wang Y., Stockinger W. et al. Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins. Proc. Natl. Acad. Sci. U S A. 2005;102:13129–13134. https://doi.org10.1073/pnas.0506716102.
22. Gopallawa I., Freund J. R., Lee R. J. Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cell Mol Life Sci. 2021;78(1):271–286. https://doi.org10.1007/s00018-020-03494-y.
Review
For citations:
Nyoma M.A., Murkina R.G., Sadovaya V.V., Mineev V.N. Role of TAS2R and transcription factor SREBP-2 in pathogenesis of respiratory diseases. New St. Petersburg Medical Records. 2024;(4):26-30. (In Russ.) https://doi.org/10.24884/1609-2201-2024-103-4-26-30