IL-23/IL-17 axis in the pathogenesis and therapy of axial spondyloarthritis associated with inflammatory
https://doi.org/10.24884/1609-2201-2024-103-3-65-74
Abstract
In spite of obvious role of IL-17 in the pathogenesis of IBD and axial spondyloarthritis, recently, in combination of these pathologies, usage of targeted drugs aimed at IL-17 and IL-23 requires special caution. Thus, using an IL-17A inhibitor in patients with axial spondyloarthritis associated with IBD, it is possible to prevent the progression of spondyloarthritis, but cause exacerbation of IBD. In turn, using an IL-23 inhibitor in such patients, can expect remission of IBD, but progression of spondyloarthritis. The purpose of our literature review is to identify and explain the cause of such observations. In IBD, IL-23 promotes the formation of "pathogenic" Th17, and inhibition of this cytokine appears to be somewhat effective, since IL-17A production by "nonpathogenic" Th17 in the intestinal mucosa remains unchanged. At the same time, in axial spondyloarthritis, IL-23 plays an important role only in the initiation of the pathological process, rather than in maintaining joint damage in an already established disease, which may explain the ineffectiveness of targeted drugs aimed at this cytokine. Exacerbation of IBD with IL-17A inhibition may be explained by disruption of IL-17-induced intercellular epithelial contacts. However, IL-17A inhibitors are quite effective in the treatment of axial spondyloarthritis, since they prevent IL-17-induced inflammation and bone destruction. We also suggest that IL-17A in axial spondyloarthritis is secreted predominantly by myeloid cells rather than Th17. Thus, in the pathogenesis of axial spondyloarthritis associated with inflammatory bowel diseases, the IL-23/ IL-17 axis plays a central role. However, modulation of the IL-17 signaling cascade in this situation remains ambiguous and requires further study.
About the Authors
A. A. RubinsteinRussian Federation
Artem A. Rubinstein, 1st Year Resident in the Direction of General Doctor (Family Medicine)
6–8, L’va Tolstogo str., Saint Petersburg, 197022
N. D. Gaponov
Russian Federation
Nikolay D. Gaponov, 1st Year Resident in the Direction of Cardiology
Saint Petersburg
D. A. Davydov
Russian Federation
Denis A. Davydov, Postgraduate Student of the Department of Hospital Therapy with the Course of Allergology and Immunology named after Acad. M. V. Chernorutsky with Clinic
Saint Petersburg
V. V. Dun’dick
Russian Federation
Vladimir V. Dun’dick, 1st Year Resident in the Direction of General Doctor (Family Medicine)
Saint Petersburg
V. N. Marchenko
Russian Federation
Valery N. Marchenko, Dr. of Sci. (Med)., Professor, Professor of the Department of Hospital Therapy
Saint Petersburg
I. V. Kudryavtsev
Russian Federation
Igor V. Kudryavtsev, PhD (biology), Cand. of Sci. (Biol.), Assistant Professor of the Department of immunology
Saint Petersburg
References
1. Sieper J., Rudwaleit M., Baraliakos X. et al. The assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009;68 Suppl 2:ii1–44.
2. Panes J., Bouhnik Y., Reinisch W. et al. Imaging techniques for assessment of inflammatory bowel disease: joint ECCO and ESGAR evidence-based consensus guidelines. J Crohns Colitis. 2013;7(7):556–85.
3. van der Linden S., Valkenburg H. A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modifi tion of the New York criteria. Arthritis Rheum. 1984;27(4):361–8.
4. Xiong Y., Cai M., Xu Y. et al. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol. 2022;13:996103.
5. Torres J., Bonovas S., Doherty G. et al. ECCO Guidelines on Therapeutics in Crohn’s disease: Medical treatment. J Crohns Colitis. 2020;14(1):4–22.
6. Li N., Shi R. H. Updated review on immune factors in pathogenesis of Crohn’s disease. World J Gastroenterol. 2018;24(1):15–22.
7. Vakhitov T. Ya., Kudryavtsev I. V., Sall T. S. et al. T helper cell subsets, key cytokines and chemokines in the pathogenesis of inflammatory bowel disease (Part 1). Clin Pract Pediatr. 2020;15(6):67–78. (In Russ.).
8. Raine T., Bonovas S., Burisch J. et al. ECCO Guidelines on therapeutics in ulcerative colitis: Medical Treatment. J Crohns Colitis. 2022;16(1):2–17.
9. Segal J. P., LeBlanc J. F., Hart A. L. Ulcerative colitis: an update. Clin Med Lond Engl. 2021;21(2):135–9.
10. Fobelo Lozano M. J., Serrano Giménez R., Castro Fernández M. Emergence of inflammatory bowel disease during treatment with secukinumab. J Crohns Colitis. 2018;12(9):1131–3.
11. Guillo L., D’Amico F., Danese S. et al. Ustekinumab for extra-intestinal manifestations of inflammatory bowel disease: A systematic literature review. J Crohns Colitis. 2021;15(7):1236–43.
12. Albayrak F., Gür M., Karataş A. et al. Is the use of secukinumab after anti-TNF therapy greater than expected for the risk of developing inflammatory bowel disease? Reumatol Clin. 2024;20(3):123–7.
13. Onac I. A., Clarke B. D., Tacu C. et al. Secukinumab as a potential trigger of inflammatory bowel disease in ankylosing spondylitis or psoriatic arthritis patients. Rheumatol Oxf Engl. 2021;60(11):5233–8.
14. Liu J., Aruljothy A., Narula N. et al. A187 association of il-17 inhibitor treatment with new or worsening inflammatory bowel disease: a case series. J Can Assoc Gastroenterol. 2021;4(Suppl 1):202–4.
15. Schreiber S., Colombel J. F., Feagan B. G. et al. Incidence rates of inflammatory bowel disease in patients with psoriasis, psoriatic arthritis and ankylosing spondylitis treated with secukinumab: a retrospective analysis of pooled data from 21 clinical trials. Ann Rheum Dis. 2019;78(4):473–9.
16. Mease P. Ustekinumab Fails to show efficacy in a phase iii axial spondyloarthritis program: The importance of negative results. Arthritis Rheumatol Hoboken NJ. 2019;71(2):179–81.
17. Wendling D., Cedoz J. P., Racadot E., Dumoulin G. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine. 2007;74(3):304–5.
18. Singh R., Aggarwal A., Misra R. Th1/Th17 cytokine profiles in patients with reactive arthritis/undifferentiated spondyloarthropathy. J Rheumatol. 2007;34(11):2285–90.
19. Mei Y., Pan F., Gao J. et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol. 2011;30(2):269–73.
20. Xueyi L., Lina C., Zhenbiao W. et al. Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-α therapy. J Clin Immunol. 2013;33(1):151–61.
21. Chen W. S., Chang Y. S., Lin K. C. et al. Association of serum interleukin-17 and interleukin-23 levels with disease activity in Chinese patients with ankylosing spondylitis. J Chin Med Assoc JCMA. 2012;75(7):303–8.
22. Jandus C., Bioley G., Rivals J. P. et al. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 2008;58(8):2307–17.
23. Shen H., Goodall J. C., Hill Gaston J. S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 2009;60(6):1647–56.
24. Appel H., Maier R., Wu P. et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther. 2011;13(3):R95.
25. Chyuan I. T., Chen J. Y. Role of Interleukin(IL-) 17 in the pathogenesis and targeted therapies in spondyloarthropathies. Mediators Inflamm. 2018;2018:2403935.
26. Costello M. E., Ciccia F., Willner D. et al. Brief Report: Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol Hoboken NJ. 2015;67(3):686–91.
27. Zielinski C. E., Mele F., Aschenbrenner D. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature. 2012;484(7395):514–8.
28. Wright P. B., McEntegart A., McCarey D. et al. Ankylosing spondylitis patients display altered dendritic cell and T cell populations that implicate pathogenic roles for the IL-23 cytokine axis and intestinal infl Rheumatol Oxf Engl. 2016;55(1):120–32.
29. Ciccia F., Guggino G., Rizzo A. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis. 2015;74(9):1739–47.
30. Ciccia F., Bombardieri M., Principato A. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60(4):955–65.
31. Cua D. J., Tato C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10(7):479–89.
32. Ghoreschi K., Laurence A., Yang X. P. et al. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature. 2010;467(7318):967–71.
33. Lee J. S., Tato C. M., Joyce-Shaikh B. et al. Interleukin-23-Independent IL-17 production regulates intestinal epithelial permeability. Immunity. 2015;43(4):727–38.
34. Knochelmann H. M., Dwyer C. J., Bailey S. R. et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458–69.
35. Hirota K., Turner J. E., Villa M. et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 2013;14(4):372–9.
36. Cua D. J., Sherlock J., Chen Y. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421(6924):744–8.
37. Langrish C. L., Chen Y., Blumenschein W. M. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.
38. Chung Y., Chang S. H., Martinez G. J. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009;30(4):576–87.
39. Sutton C., Brereton C., Keogh B. et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203(7):1685–91.
40. Matsuki T., Nakae S., Sudo K. et al. Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int Immunol. 2006;18(2):399–407.
41. McGeachy M. J., Chen Y., Tato C. M. et al. The interleukin 23 receptor is essential for the terminal diff of interleukin 17-producing eff T helper cells in vivo. Nat Immunol. 2009;10(3):314–24.
42. Davydova A., Kurochkina Y., Goncharova V. et al. The Interleukine-17 cytokine family: Role in development and progression of spondyloarthritis, current and potential therapeutic inhibitors. Biomedicines. 2023;11(5):1328.
43. Ramesh R., Kozhaya L., McKevitt K. et al. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med. 2014;211(1):89–104.
44. Hassane M., Jouan Y., Creusat F. et al. Interleukin-7 protects against bacterial respiratory infection by promoting IL-17A-producing innate T-cell response. Mucosal Immunol. 2020;13(1):128–39.
45. Webster K. E., Kim H. O., Kyparissoudis K. et al. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival. Mucosal Immunol. 2014;7(5):1058–67.
46. Gracey E., Qaiyum Z., Almaghlouth I. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann Rheum Dis. 2016;75(12):2124–32.
47. Ritchlin C., Rahman P., Kavanaugh A. et al. Effi and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73(6):990–9.
48. Deodhar A., Gottlieb A. B., Boehncke W. H. et al. Efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study. Lancet Lond Engl. 2018;391(10136):2213–24.
49. van Tok M. N., Na S., Lao C. R. et al. The initiation, but not the persistence, of experimental spondyloarthritis is dependent on interleukin-23 signaling. Front Immunol. 2018;9:1550.
50. Baeten D., Østergaard M., Wei J. C. C. et al. Risankizumab, an IL23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis. 2018;77(9):1295–302.
51. Deodhar A., Gensler L. S., Sieper J. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol Hoboken NJ. 2019;71(2):258–70.
52. Baeten D., Baraliakos X., Braun J. et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet Lond Engl. 2013;382(9906):1705–13.
53. van Tok M. N., Satumtira N., Dorris M. et al. Innate immune activation can trigger experimental spondyloarthritis in HLA-B27/ Huβ2m transgenic rats. Front Immunol. 2017;8:920.
54. Noordenbos T., Yeremenko N., Gofita I. et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 2012;64(1):99–109.
55. Hayashi E., Chiba A., Tada K. et al. Involvement of Mucosal-associated Invariant T cells in Ankylosing Spondylitis. J Rheumatol. 2016;43(9):1695–703.
56. Toussirot É., Laheurte C., Gaugler B. et al. Increased IL-22and IL-17A-producing mucosal-associated invariant T cells in the peripheral blood of patients with ankylosing spondylitis. Front Immunol. 2018;9:1610.
57. Cuthbert R. J., Watad A., Fragkakis E. M. et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann Rheum Dis. 2019;78(11):1559–65.
58. Rosine N., Fogel O., Koturan S. et al. T cells in the pathogenesis of axial spondyloarthritis. Joint Bone Spine. 2023;90(6):105619.
59. Lekpa F. K., Poulain C., Wendling D. et al. Is IL-6 an appropriate target to treat spondyloarthritis patients refractory to anti-TNF therapy? A multicentre retrospective observational study. Arthritis Res Ther. 2012;14(2):R53.
60. Sieper J., Braun J., Kay J. et al. Sarilumab for the treatment of ankylosing spondylitis: results of a Phase II, randomised, double-blind, placebo-controlled study (ALIGN). Ann Rheum Dis. 2015;74(6):1051–7.
61. Haibel H., Rudwaleit M., Listing J. et al. Open label trial of anakinra in active ankylosing spondylitis over 24 weeks. Ann Rheum Dis. 2005;64(2):296–8.
Review
For citations:
Rubinstein A.A., Gaponov N.D., Davydov D.A., Dun’dick V.V., Marchenko V.N., Kudryavtsev I.V. IL-23/IL-17 axis in the pathogenesis and therapy of axial spondyloarthritis associated with inflammatory. New St. Petersburg Medical Records. 2024;(3):65-74. (In Russ.) https://doi.org/10.24884/1609-2201-2024-103-3-65-74